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A theoretical analysis is presented on the behaviour of the model coefficients for the
well-known Smagorinsky model and two variational multi-scale (VMS) variants of
the Smagorinsky model. The dependency on two important parameters is addressed,
i.e. the ratio of the LES-filter width ∆ and the Kolmogorov scale η on the one
hand, and the ratio of the integral length scale L and the LES-filter width ∆ on
the other hand. First of all, it is demonstrated that the model coefficients vary
strongly with ∆/η. By evaluating the model coefficients as functions of the subgrid
activity s (which expresses the relative contribution of the subgrid-scale model in
the total dissipation, and corresponds to a nonlinear transformation of ∆/η), we
show that a classical Lilly–Smagorinsky model overestimates the dissipation, even in
cases where the dissipation of the subgrid-scale model is dominant. Therefore, generic
and easy-to-use modifications to the different models are proposed, which provide
close approximations to the models employing ‘exact’ coefficients. For the standard
Smagorinsky model, this modified model corresponds to approximating the eddy
viscosity νt as νt = (ν2

Lilly + ν2)1/2 − ν, with νLilly the turbulent viscosity obtained by
employing Lilly’s classical Smagorinsky constant and ν the laminar viscosity. Similar
easy-to-use relations are presented for the variational multi-scale Smagorinsky models.
Next to the ∆/η dependence of the model coefficients, the L/∆ behaviour is also
elaborated. Although a strong dependence on L/∆ is observed for low values of the
ratio, we do not advocate the use of L/∆-dependent model coefficients. Rather, the
asymptotic L/∆ independence and the speed of asymptotic convergence are used as
a tool to compare the quality of subgrid-scale models (e.g. L/∆ > 10 is a minimum
order of magnitude for the small–small VMS model), and differences are observed
between the standard Smagorinsky model and its two VMS variants. Finally, for the
VMS models, the influence of the shape of the high-pass filter, used in the variational
multi-scale formulation, is investigated. We observed that smooth high-pass filters
result in more robust VMS Smagorinsky models.

1. Introduction
Large-eddy simulations (LES) are now firmly established on an academic level as a

research and design tool for turbulent flows. There have been several comprehensive
reviews (see e.g. Lesieur & Métais 1996; Moin & Kim 1997; Ghosal 1999; Pope 2004),
and some first text books (e.g. Sagaut 2002; Geurts 2003) on the subject. The
continuing work on this subject, slowly pushes LES to a mature technology for the
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simulations of fluid-flow phenomena; but even so, several issues still remain open.
One of the more important issues is the closure of the subgrid-scale stresses by means
of a suitable model.

Based on the definition of a low-pass filter in space, the LES equations can be
derived by filtering the Navier–Stokes equations. The aim of this operation is to reduce
the temporal and spatial complexity of high-Reynolds-number turbulence, such that
its numerical simulation is feasible on modern day computing facilities. It is well
accepted that the direct numerical simulation (DNS) of the Navier–Stokes equations
of many relevant turbulent flows remains computationally unmanageable for the next
few decades (Jiménez 2003). However, the low-pass filtering of the nonlinear terms
in the Navier–Stokes equations introduces a set of closure terms, the subgrid-scale
stresses, which cannot be explicitly expressed in terms of filtered variables. In fact,
these subgrid-scale stresses account for the interaction between the – by virtue of the
filter – unresolved scales and the resolved LES variables. At present, the modelling
of these subgrid-scale stresses in terms of resolved properties remains an important
problem in large-eddy simulations.

Naturally, the formulation of a suitable subgrid-scale closure should ensure that
the behaviour of mean flow properties and flow statistics resulting from large-eddy
simulations remain comparable to Navier–Stokes turbulence. Regrettably, as reviewed
by Jiménez & Moser (2000), we can estimate, based on conditional averages, that the
statistical error between the ‘best’ model based on resolved properties and the effective
subgrid-scale stresses is at the least in the order of 80 %. This clearly illustrates the
difficulty related to the formulation of subgrid-scale closures.

In practice, we can devise a ranking of properties a subgrid-scale model should
contain or preserve. Certainly, the first item on such a list is the requirement that the
model enacts the correct level of total turbulent dissipation. Without suggesting a
specific order, items further down the list might contain the preservation of symmetry
properties of the differential equations, the inclusion of back-scatter effects, the
prediction of intermittency levels, realizability, etc. (see e.g. Meneveau 1994; Vreman,
Geurts & Kuerten 1994; Fureby & Tabor 1997; Ghosal 1999; Carati, Winckelmans &
Jeanmart 2001, for more information). The quality of a subgrid-scale closure can be
roughly appreciated based on the number of physical and mathematical properties
it effectively preserves.

According to physics, the problem of the subgrid closure can be considered in
a different way. It is well known from experiments that turbulent flows become
Reynolds independent at very large Reynolds numbers. This so-called asymptotic
Reynolds behaviour of flows is related to the turbulent dissipation occurring at very
small scales (order of magnitude of the Kolmogorov scale), while the important
flow features are determined by the large energy-containing scales of turbulence.
Both regions, are typically separated by a turbulent inertial subrange. At very high
Reynolds numbers, the separation between the dissipation scales and the large scales
in turbulence is so large, that the dissipation mechanism no longer influences the
flow features. In a sense, accurate LES of any asymptotic-Reynolds-number flow can
be performed by simulating the corresponding ‘lowest’ asymptotic-Reynolds-number
case with a resolution corresponding to the Kolmogorov scale of the lower Reynolds
number. As a result of the scale separation, the selected dissipation mechanism, or
– using LES nomenclature – subgrid-scale closure, which is used at the smallest
scales will not influence the mean flow solution. For the ‘lowest’ asymptotic Reynolds
number, we can estimate that the effective ratio between the large scales with length L

and the Kolmogorov scale η, i.e. L/η, amounts at least to 1000 (Jiménez 2003). In fact,
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for many practical applications, asymptotic Reynolds numbers are high and resolving
the Kolmogorov scale of the ‘lowest’ asymptotic Reynolds number is effectively
beyond the capability of modern day computers. Hence, in view of these reflections,
a good subgrid-scale model for LES should succeed in providing an effective scale
separation between the dissipation mechanism (at scales of the order of the LES
low-pass filter width ∆) and the large turbulent scales (with length L) for values
of L/∆ which are much lower than the lowest L/η ratio of asymptotic turbulence.
Naturally, lower values of L/∆ for which the subgrid-scale model should still provide
scale separation, will impose more stringent restrictions on the formulation of the
subgrid-scale closure and the inclusion of a number of requirements contained in the
above-mentioned ranking of important model properties might be necessary. In fact,
in our opinion, the ratio L/∆ at which the model dissipation mechanism and the
large turbulent scales start to be mutually independent can be an interesting objective
measure for the quality of a subgrid-scale model. This line of thought will be further
explored in the present paper.

The most well-documented subgrid model in LES literature is the Smagorinsky
(1963) model. The model was developed with very high-Reynolds-number applications
in mind. It formulates a turbulent viscosity, using the assumption that turbulence
beyond the LES filter width is in equilibrium, such that the production and dissipation
of subgrid energy are balanced. Lilly (1967) presented a theoretical analysis, which
determines – for high Reynolds numbers – the model coefficient associated with the
Smagorinsky model. Muschinski (1996) took this analysis further and introduced
the Smagorinsky fluid, a virtual fluid, containing a Smagorinsky viscosity instead
of laminar viscosity. In this study, a relation between the Smagorinsky coefficient
and the LES filter shape was introduced. Later, Magnient, Sagaut & Deville (2001)
verified Muschinski’s framework with actual numerical simulations of a Smagorinsky
fluid. Verifying the general shape of the eddy viscosity for different LES filters, Leslie
& Quarini (1979) showed that the Smagorinsky model indeed formulates an eddy
viscosity which is – on average – close to the exact spectral eddy viscosity. Hence,
various theoretical studies support the Smagorinsky model as an interesting LES
closure. Also from a physical point of view, taking the discussion in the previous
paragraph in mind, the Smagorinsky closure should yield accurate results provided
that L/∆ is large enough and provided that the turbulence is indeed in equilibrium
at subgrid scales.

Nevertheless, practical use of the Smagorinsky model typically reveals that the
model is too dissipative in many practical situations, including low-Reynolds-number
shear flows, wall-turbulence, transition, etc. In our view, there are two main reasons
for this.

(i) In many practical cases, the ratio L/∆ is too low for the theoretical framework
supporting the Smagorinsky model. Specifically, the equilibrium assumption for the
subgrid scales is questionable for low values of L/∆. Canuto & Cheng (1997)
introduced (for high Reynolds numbers) an interesting generalization of the Lilly–
Smagorinsky formulation, which does not use the equilibrium assumption, and
naturally recovers specific large-scale behaviour of stratification and shear. Using
a different approach, Hughes, Mazzei & Jansen (2000) proposed a variational multi-
scale formulation of the Smagorinsky model, which restricts the effect of the subgrid-
scale dissipation to the smallest resolved scales of the simulation. This model has
been shown to provide better results than the standard Smagorinsky model in various
practical applications (see e.g. Hughes, Mazzei & Oberai 2001a; Hughes, Oberai &
Mazzei 2001b; Holmen et al. 2004). Naturally, by deviating from the classical
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Smagorinsky formulation, many different subgrid formulations attempt to provide
good results for low values of L/∆.

(ii) The Smagorinsky coefficient is not a constant, contrary to what Lilly’s (1967)
analysis suggests. As will be shown in the present paper, the Smagorinsky coefficient
strongly depends on the local ratio of the filter width ∆ to the Kolmogorov scale η.
Even for moderate to relatively high Reynolds-number flows, this influence can be
important (e.g. a priori results in the present paper indicate that the standard Lilly–
Smagorinsky model can overestimate dissipation with approximately 5 % to 10 % for
a subgrid activity – here defined as the ratio of the subgrid-scale-model dissipation
to the total dissipation – in the order of 0.95 and 0.9, whereas this error can be up to
50 % at lower values for the subgrid activity). Voke (1996), while implicitly assuming
L/∆ = ∞, presented a first framework showing that the Smagorinsky coefficient
depends on the grid Reynolds number (which is related to ∆/η). Regrettably, his
modifications to the Smagorinsky coefficient are not widely used, possibly because
his proposal is based on fits which are not generic and include a parameter which
depends on the shape of the energy spectra which were deployed during his analysis.
In the same context, Meneveau & Lund (1997) found for the dynamic procedure that
the ∆/η dependence of the Smagorinsky coefficient can be important in simulations.
They demonstrated that the application of the classical dynamic procedure (Germano
et al. 1991), does not correctly reproduce this dependence as it assumes a coefficient
which is the same at the LES-filter and test-filter level.

The present paper introduces a framework which allows us to evaluate the model
coefficients of both the standard Smagorinsky model and the variational multi-scale
(VMS) formulations of the Smagorinsky model as functions of both the ratio L/∆

and the ratio ∆/η and this for a general class of low-pass filters (note that, for
high Reynolds numbers, the product of L/∆ with ∆/η corresponds to the Reynolds
number, by virtue of the well-known relation Re ∼ (L/η)4/3). Consequently, the model
coefficient’s dependence on these parameters can be evaluated. It will be shown that
both L/∆ and ∆/η can have a very large influence on the effective model coefficient.
However, the dependence on these two parameters will be used in a different way.

First of all, as discussed above, it is the L/∆ independence of the model
coefficient which interests us from a practical point of view. How fast the asymptotic
independence of the model’s coefficient for L/∆ � 1 is reached, will be shown to
be an interesting point of reference for comparing the standard Smagorinsky model
to the different variational multi-scale Smagorinsky formulations. It is, however, not
our intention to proclaim the direct use of L/∆-dependent model coefficients in
simulations. In fact, dependence of the coefficients on L/∆ for L/∆ ∼ 1 corresponds
to our particular choice for the low-wavenumber behaviour of turbulence, i.e.
homogeneous isotropic turbulence, and different choices for the large-scale behaviour
of the turbulence will yield different results. However, we assume that the main trends
observed for the asymptotic behaviour and the speed of this asymptotic convergence,
which we use as a point of reference for comparing the models, are not too sensitive
to the behaviour of the large-scale turbulence.

Secondly, the ∆/η dependence of the model coefficients will be shown to be
important, and – in contrast to the L/∆ behaviour – we will advocate the use of
modified models which account for this dependence. Resulting from our theoretical
analysis, which expresses the model coefficient’s dependence on the relevant flow
parameters, a methodology is proposed, which allows the construction of generic and
accurate approximations to the ‘exact’ models (i.e. the models which use a coefficient
with the exact dependence on ∆/η). Good approximations are presented for the
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standard Smagorinsky model and for two versions of the variational multi-scale
formulation of the Smagorinsky model. As a preview of these results, we will show
that such an approximation for the Smagorinsky model corresponds to calculating
the eddy viscosity νt in the LES as νt = (ν2

Lilly + ν2)1/2 − ν, with νLilly the turbulent
viscosity obtained by employing Lilly’s model constant and ν the laminar viscosity.
One can clearly appreciate the ease of implementation and the generic nature of this
proposal. In the course of the present text, the origin of this approximation will be
rigorously justified.

The paper is organized in the following way. First, in § 2, the standard Smagorinsky
model in analysed, the behaviour of the model’s coefficient is evaluated and improved
formulations for the Smagorinsky model are elaborated. In § 3, a similar formalism
is elaborated for the variational multi-scale formulation of the Smagorinsky model.
Furthermore, the VMS and standard Smagorinsky models are compared based on
their dependence on L/∆. Finally, conclusions are presented in § 4.

2. An analysis of the standard Smagorinsky model
As introduced in the previous section, large-eddy simulations are formally based

on the low-pass filtered Navier–Stokes equations. As a point of reference, we define
the (one-dimensional) low-pass filter operation G as

f (y) = Gf =

∫
KG(y − y ′)f (y ′) dy ′, (2.1)

where KG(y) is the filter kernel. Further, G has the property that Gc = c, for every
constant function c. The Fourier transform of the above filter definition corresponds
to f (k) = G(k)f (k), with G(k) the transfer function associated with KG(y).

Filtering the Navier–Stokes equations introduces a closure problem, i.e. the subgrid-
scale stresses τij have to be expressed using a model mij which is based on filtered
flow variables only:

mij → τij = uiuj − uiuj . (2.2)

A general class of models often used in LES are eddy-viscosity models. They model
the deviatoric part of τij and correspond to

mij = −2νtSij . (2.3)

Here, νt is the turbulent viscosity or eddy viscosity. Further, the filtered rate of strain
tensor Sij =

(
∂ui/∂xj + ∂uj/∂xi

)
/2. An often used expression for the eddy viscosity,

introduced by Smagorinsky (1963), reads

νt = C2
s ∆

2
(
2SijSij

)1/2
, (2.4)

where Cs is the Smagorinsky coefficient and ∆ the filter width related to the filter G.
Hence, using the short-hand notation |S| =(2SijSij )

1/2, the Smagorinsky model reads

mij = −2C2
s ∆

2|S|Sij . (2.5)

In the present section, the behaviour of the model coefficient Cs of the Smagorinsky
model as a function of the ratio L/∆ and as a function of the Reynolds number is
evaluated. Results of this analysis will demonstrate that the theoretical behaviour of
Cs in many practical simulations is actually far from constant. Hence, our choice of
the term Smagorinsky coefficient instead of the more commonly used ‘Smagorinsky
constant’.
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The remainder of this section is further organized in three parts. In § 2.1, Lilly’s
(1967) classical expression for the Smagorinsky coefficient is briefly reviewed. In § 2.2,
more general relations for the Smagorinsky coefficient as a function of L/∆ and
the Reynolds number are elaborated and evaluated. In § 2.3, an easy-to-implement
approximation is constructed which is shown to be a considerable improvement over
the classical ‘constant-coefficient’ Smagorinsky model.

2.1. The Lilly value for the Smagorinsky coefficient

In early literature, Cs was often hypothesized to be a universal constant related to the
Smagorinsky model. Different values for Cs are quoted, ranging from 0.1 (Deardoff
1970), 0.15 (Pope 2000), 0.17 (McMillan & Ferziger 1979), to 0.17 (Lilly 1967), 0.185
and 0.23 (Lilly 1966). Some of these values are a result of an empirical fit of the
Smagorinsky model to DNS results (Deardoff 1970; McMillan & Ferziger 1979).
In contrast, Lilly (1966, 1967), Muschinski (1996) and Pope (2000), for example,
determined the Smagorinsky model on theoretical considerations.

The classical determination of a theory-based value of the Smagorinsky model
makes two assumptions. First, an infinite Reynolds number is assumed, i.e. molecular
viscosity is neglected. Further, one approximates

νt ≈ C2
s,∞∆2〈2SijSij 〉1/2. (2.6)

The difference from (2.4) being the ensemble averaging operator 〈·〉 which is
introduced on the norm of the strain-rate tensor. Experience has shown that the
introduction of this ensemble averaging operator indeed has no relevant influence on
the performance of the model. For instance, McMillan & Ferziger (1979) were among
the first to verify this. Using both these assumptions, we can express the dissipation
of energy as

ε = 〈−mijSij 〉 = (Cs,∞∆)2
(

2

∫ ∞

0

k2E(k) dk

)3/2

, (2.7)

with E(k) the LES-filtered energy spectrum. Lilly (1967) chose the LES filter to be
a sharp cutoff filter with cutoff kc = π/∆ and further assumed E(k) to be an inertial
range spectrum, i.e. E(k) = αε2/3k−5/3. Combining this with (2.7) and some algebra
yields

Cs,∞ =
1

π

(
2

3α

)3/4

. (2.8)

For α = 1.5, which is generally accepted as the value for the Kolmogorov constant,
this leads to Cs,∞ = 0.173. For the remainder of this paper, relation (2.8) will be used
as a definition for Cs,∞.

2.2. The Smagorinsky coefficient for finite Reynolds numbers

As an alternative to an inertial-range energy spectrum, a more sophisticated spectrum
can be used for E(k), such as, for example, that proposed by Pope (2000)

E(k) = αε2/3k−5/3fL(kL)fη

(
kLRe−3/4

L

)
, (2.9)

with

fL(x) =

(
x

[x2 + cL]1/2

)11/3

, (2.10)

fη(x) = exp
(

− cβ

([
x4 + c4

η

]1/4 − cη

))
. (2.11)
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Further, L is the integral length scale, defined by E3/2/ε (with E the total energy)
and ReL is the Reynolds number based on L, defined by ReL = E1/2L/ν. Moreover,
cβ =5.2, and cL, cη are positive parameters which depend on the Reynolds number.
In fact, cL, cη are determined by ensuring that

∫ ∞
0

E(k) dk = E and
∫ ∞

0
k2E(k) dk =E ,

with E the total enstrophy. More details on the determination of cL, cη and cβ can
be found in Pope (2000) and Meyers & Baelmans (2004).

In the present paper, some practical a priori evaluations will be performed using the
specific definitions (2.10) and (2.11) for fL and fη. These spectra are well established
and comparisons with a wide range of experimental data were provided (Pope 2000,
p. 235). The universal small-scale part of the energy spectrum, generated by fη,
provides accurate fits to experiments in, for example, wake turbulence, homogeneous
shear, jets, boundary layers and pipe flows, for Taylor–Reynolds numbers ranging
from 30 to 1500. Obviously, the large-scale part of the spectrum, generated by fL, is
specific to the large-scale flow type, and is constructed to suit homogeneous isotropic
turbulence. Therefore, whenever evaluations in the present study depend on this low-
wavenumber region of the spectrum, we will carefully discuss the validity of any
related conclusions.

We want to emphasize that the majority of theoretical derivations in the present
study do not depend on a specific definition for fL and fη such as those provided
in (2.10) and (2.11), which are mainly used for actual numerical evaluations. Any
suitable energy spectrum of the form (2.9) with appropriate definitions for fL and fη

can be used, as long as it includes an explicit dependence on the integral length scale
L and the Reynolds number, and provided it guarantees the important properties∫ ∞

0
E(k) dk =E and

∫ ∞
0

k2E(k) dk =E .
Based on an appropriate analytical description of the spectrum which is Reynolds-

number dependent, a more general relation can be derived for Cs at finite Reynolds
numbers. To this end, (2.7) is generalized by adding a laminar viscosity part, leading to

ε = εt + εν = (Cs∆)2
(

2

∫ ∞

0

k2E(k) dk

)3/2

+ 2ν

∫ ∞

0

k2E(k) dk,

= (Cs∆)2
(

2

∫ ∞

0

k2(G(k))2E(k) dk

)3/2

+ 2ν

∫ ∞

0

k2(G(k))2E(k) dk, (2.12)

with εt the dissipation generated by the Smagorinsky model and εν the dissipation
generated by laminar viscosity. Note that in (2.12) the product (G(k))2E(k) is positive,
so that the integrals in (2.12) are positive. Further, it is self-evident that 0 � εν � ε, such
that C2

s � 0 is guaranteed. In (2.12), we further assume that the filter operation G is
spherical symmetric in Fourier space, such that its effect can be incorporated based on
a one-dimensional transfer function acting on the sphere-averaged energy spectrum.
Some generalizations for filters which are not spherical symmetric in Fourier space
(as encountered in various practical implementations) are added in the Appendix.

To proceed, we first introduce the auxiliary function Φ , which will be extensively
used, i.e.

Φ

(
L

∆
, ReL

)
=

∫ ∞

0

x1/3(G(x/L))2fL(x)fη

(
xRe−3/4

L

)
dx∫ ∞

0

x1/3(G(x/L))2 dx

, (2.13)

with the auxiliary variable x corresponding to kL. The function Φ is normalized
such that it evolves to 1 if ∆ 
 L and ∆ � η, where η is the Kolmogorov scale
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(η = (ν3/ε)1/4). In this case, when compared to the extensive inertial range, where
fL = fη =1, the contributions of low- or high-wavenumber ranges of the spectrum
where fL < 1 or fη < 1, are negligible in the total integration in (2.13). Note that
∆/η � 1 and L/∆ � 1 further implies that the filter G cuts in the inertial subrange
and that ReL � 1.

In order to represent the normalization of Φ in a simpler and more useful form,
we will introduce a new parameter γ , i.e.

γ =

(
4

3

∫ ∞

0

k1/3(G(k))2 dk

)3/4

π/∆
, (2.14)

which depends only on the shape of the filter G. For a sharp cutoff filter with cutoff
wavenumber kc = π/∆, we can easily verify that γ = 1. By introducing the definition
for γ in (2.13), we obtain

Φ =
4

3

∫ ∞

0

x1/3(G(x/L))2fL(x)fη

(
xRe−3/4

L

)
dx

(γ πL/∆)4/3
. (2.15)

Using the auxiliary function (2.15), and the definitions L =E3/2/ε and ReL =
E1/2L/ν into equation (2.12) leads to

1 = γ 2C2
s

(
3α

2

)3/2

π2Φ3/2 +

(
3α

2

)
(γ πL/∆)4/3

ReL

Φ. (2.16)

Whence,

Cs =
Cs,∞

γ
Φ−3/4

√
1 −

(
γL

Cs,∞∆

)4/3
1

ReL

Φ. (2.17)

By introducing the well-known relation ReL = (L/η)4/3 – the equality (instead of the
more generally encountered proportionality) in this relation is ensured by the careful
definition of ReL and L – where η represents the Kolmogorov length scale, we further
obtain

Cs =
Cs,∞

γ
Φ−3/4

√
1 −

(
γ η

Cs,∞∆

)4/3

Φ. (2.18)

In this expression, Cs depends on the ratio L/∆ and on the Reynolds number.
Some obvious limits can now be verified. First of all, for ReL → ∞ and L/∆ constant

(i.e. also ∆/η → ∞), we obtain

Cs

(
L

∆
, ∞

)
=

Cs,∞

γ
Φ

(
L

∆
, ∞

)−3/4

. (2.19)

When in addition L/∆ � 1, it follows that Cs =Cs,∞/γ .
Two limits which are not so straightforward, are, for constant Reynolds number

ReL, the limit L/∆ → ∞ (and hence ∆/η → 0), and the limit L/∆ → 0. These limits
can be readily expressed for a sharp cutoff filter with cutoff kc = π/∆. To this end, we
can simplify Φ to

Φsc =

(
Cs,∞∆

γL

)4/3

ReL

[
1 − 2α

ReL

∫ ∞

πL/∆

x1/3(G(x/L))2fL(x)fη

(
xRe−3/4

L

)
dx

]
. (2.20)
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For L/∆ → ∞ and ReL constant (and hence also ∆/η → 0), the term in square
brackets converges exponentially to 1, since the energy in the tail of the spectrum
decays exponentially for increasing wavenumbers (cf. the formulation of fη in (2.11)).
Inserting this into (2.17), allows us to obtain Cs → 0 for this limit. For the second
limit, L/∆ → 0 (and ReL constant), elaboration provides Φsc → 0, such that Cs → ∞.
It is, however, important to remark that this second limit is related to our selection
of the large-scale flow behaviour, and, for example, for flows with a mean shear, this
limit will be different.

For general smooth low-pass filters, the situation is more subtle, and both limits
depend on the shape of the filter G. To obtain the first limit (L/∆ → ∞) a Taylor-series
expansion of G(x/L) around ∆ can be used, i.e. G(x/L) ≈ 1 − C ′(x∆/L)q , with q the
order of the filter and C ′ a constant. Using this in (2.15) and (2.17) allows us to find
that Cs → 0 if q > 2. For q = 2, the limit is finite, whereas q < 2 yields Cs → ∞. The
second limit is related to the decay of the filter transfer function at high wavenumbers.
If we take G(x/L) � (x∆/L)−r , then G(x/L) should decay faster than r =2/3 for the
limit to correspond to Cs → ∞.

Obviously, apart from the ratio L/∆ and the Reynolds number, the shape of the
LES low-pass filter G can have a significant influence on the value of Cs . This is clear
from the asymptotic analysis presented above, and further also by the appearance
of the parameter γ in the equations. For a Gaussian filter (G(k) = exp(−k2∆2/24)),
we can verify that γ ≈ 1.02; while for a top-hat filter (G(k) = 2 sin(−k∆/2)/k/∆),
γ ≈ 1.12. Finally, we recall that for a standard sharp cutoff filter with kc = π/∆, γ is
equal to 1. Often, in Smagorinsky implementations, the effect of the LES filter appears
only through its filter width ∆, for which definitions might even differ. In this context,
γ provides a more formal means to account in the determination of the Smagorinsky
coefficient for the shape of the LES filter with width ∆. For the LES low-pass filter
G, we will – in the present paper – consider only a sharp cutoff filter, as it is not our
intent to present an extensive study of the LES filter shape on the model coefficients.
Hence, γ = 1, and the above-discussed limits can be expected. Later, in the context
of VMS models (cf. § 3), we will evaluate some effects of smooth filters, when VMS
high-pass filters are considered.

For the sake of further analysis, we introduce the subgrid activity, defined as
s = εt/ε = 1 − εν/ε. Based on (2.12) and (2.16), we see directly that

s = 1 −
(

γ η

Cs,∞∆

)4/3

Φ

(
L

∆
, ReL

)
. (2.21)

The term s does not depend directly on Cs or the formulation of the Smagorinsky
model. This is logical, since the correct selection of Cs ensures that the total dissipation
of the cutoff filtered spectrum is independent of the filter width ∆ and the model.
In a sense, s is a transformation of the variable ∆/η. However, where ∆/η allows
us to evaluate the change in Cs as a function of the proximity between ∆ and the
Kolmogorov scale η, the subgrid activity s allows us to study the evolution of Cs as
a function of the relative importance of the subgrid-scale dissipation when compared
to the total dissipation level. The subgrid activity is often used for the evaluation of
large-eddy simulations (see, e.g. Geurts & Fröhlich 2002; Meyers, Geurts & Baelmans
2003), and might be often more easily assessed in actual simulations than ∆/η.

Based on the effective (numerical) integration of the spectrum functions introduced
in equations (2.10) and (2.11), it is possible to evaluate the behaviour of Cs a priori.
In figure 1, the evolution of Cs is displayed as a function of s for different values of
L/∆. It can be clearly appreciated that Cs varies strongly with the subgrid activity.
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Figure 1. Evolution of Cs as a function of the subgrid activity (cf. (2.18) and (2.21)) for
different values of L/∆. —, L/∆ = 10; −−−, L/∆ =50; −.−, L/∆ =100.

Specifically in the vicinity of s = 1, which is relevant for many practical LES cases, Cs

shows a constant slope differing from zero. This illustrates the importance of having
a variable ‘Smagorinsky constant’. Indeed, in many practical LES of high-Reynolds-
number applications, one might expect various flow regions where s is considerably
lower then 1. Typical examples are jets, mixing layers, wakes, where the local Reynolds
number of turbulence is considerably lower outside the mixing regions, or wall-
bounded flows, where the local turbulent Reynolds number can decrease considerably
near the viscous sublayer. Hence, in view of the results presented in figure 1, it is
not surprising that the standard (constant-coefficient) Smagorinsky model is often
experienced to be too dissipative.

In figure 1, the dependence of Cs on L/∆ is also shown. Specifically for L/∆ =10,
the Smagorinsky coefficient’s dependence on s differs considerably from Cs ’s behaviour
at L/∆ =50 and L/∆ =100. In fact, the latter two values display the L/∆-asymptotic
behaviour of Cs when L/∆ � 1, while L/∆ =10 is clearly too low. Hence, the
Smagorinsky model requires relatively high ratios of L/∆, before scale separation
occurs. This is unsurprising, as it is commonly accepted that the Smagorinsky model
often affects the large-scale structures too much. This experience-based observation
might be related to the fact that in many practical large-eddy simulations – for lack
of computational resources – the ratio of the integral length scales to the LES filter
cutoff is often relatively low compared to what would be required for scale separation
in a Smagorinsky LES. We will further address the issue of scale separation in § 3.3,
where the Smagorinsky model will be compared with some variational multi-scale
formulations of the Smagorinsky model.

2.3. On the formulation of approximations to the exact Smagorinsky coefficient

In principle, equation (2.18) provides an accurate formula which can be used to
determine the Smagorinsky constant. However, in practice, this relation is difficult
in use, since properties such as Φ and ReL, or ∆/η are not straightforwardly
available during most effective large-eddy simulations. Therefore, a modification
of the Smagorinsky model is formulated, which is easy to implement in any Navier–
Stokes solver and which approximates the relation for Cs to a certain degree. To
achieve this, we will presume L/∆ � 1, since, for reasons already discussed above, it is
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not our intention to formulate L/∆-dependent approximations to (2.18) for practical
use. We further recall that the filter G is a sharp cutoff filter in the present study.

First of all, an approximation to (2.18) which is valid for an LES filter G which cuts
in the inertial subrange, can be obtained by approximating Φ by its inertial-range
value, i.e. Φ =1. In this case,

C×
s =

Cs,∞

γ

√√√√max

{
1 −

(
γ η

Cs,∞∆

)4/3

, 0

}
, (2.22)

where the max-function is introduced to keep the term under the square-root strictly
positive, in case the filter width ∆ is situated in the dissipation range. (The ‘×’, and ‘∗’
superscripts will be used throughout this paper to identify proposed approximations
to the ‘exact’ models.) Obviously, this approximation C×

s to Cs is not directly usable
in simulations, since ∆/η is usually not known. However, if we express the associated
turbulent viscosity ν×

t , we obtain

ν×
t = (C×

s ∆)2〈2SijSij 〉1/2 = max
{
(Cs,∞∆/γ )2〈2SijSij 〉1/2 − ν, 0

}
= max {νLilly − ν, 0} . (2.23)

Clearly, this relation provides an expression which is easy to implement in a Navier–
Stokes solver. It suggests that the turbulent viscosity νt should scale in the inertial
subrange and for finite Reynolds numbers as νLilly − ν; this is clearly in contrast to
Lilly’s Smagorinsky model, which obviously presumes νt = νLilly for an inertial-range
cutoff of the spectrum.

Evidently, the assumption Φ = 1 to obtain (2.22) and (2.23) will not yield a good
approximation to Cs (cf. (2.18)) when ∆ is approaching the Kolmogorov scale, as
in this range Φ �= 1. Therefore, inspired by (2.23), we will try to formulate a fit to
νt , which is based on an appropriate combination of νLilly and ν, and which retains
the correct scaling of νt in the inertial range. We found this approach successful, as
opposed to directly trying to find a fit for Φ in (2.18), since such a fit of Φ in practice
seems inevitably to require the use of parameters such as the Kolmogorov scale η.

To this end, define the dimensionless ratios

R = νt/ν, (2.24)

and

Q =(Cs,∞∆/γ )2〈2SijSij 〉1/2/ν. (2.25)

It is now the aim to approximate R based on the property Q, i.e. F (R, Q) = 0, such
that the turbulent viscosity (which corresponds to Rν) approximates well the eddy
viscosity of an ‘exact’ Smagorinsky model (i.e. using the coefficient Cs in (2.18)).
Moreover, Q is a quantity which is easily obtained in simulations, such that any
model which is obtained from a relation F (R, Q) = 0 is practical in use. For the
Lilly–Smagorinsky model (2.6), we readily see that R = Q, while equation (2.23)
corresponds to R = max{Q − 1, 0}.

Using (2.18) and the definition of Φ (2.15), R and Q are expressed as

R =
(Cs∆)2 〈2SijSij 〉1/2

ν
=

(
Cs,∞∆

γη

)4/3

Φ

(
L

∆
, ReL

)−1

− 1, (2.26)

and

Q =
(Cs,∞∆/γ )2〈2SijSij 〉1/2

ν
=

(
Cs,∞∆

γη

)4/3

Φ

(
L

∆
, ReL

)1/2

. (2.27)
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Figure 2. Evolution of R ( + 1 to allow logarithmic scaling) as a function of Q for the
Smagorinsky model (L/∆ � 1). —, R exact; −−−, simple approximation R× of (2.23); −.−,
closer approximation R∗ corresponding to (2.29).

Hence, based on the integration of Φ , (2.15), employing Pope’s spectrum, it
is straightforward to evaluate R a priori as function of Q. In figure 2, this
theoretical dependence of R as function of Q is presented. Moreover, the relation
R = max{Q − 1, 0}, corresponding to (2.23) is also presented.

Based on this analysis, a function F fitting R to Q can be constructed. We propose
to take

F (R, Q) = (R +1 − Q)(R + 1 + Q) − 1 = 0, (2.28)

which corresponds to

ν∗
t =

√
(Cs,∞∆/γ )4〈2SijSij 〉 + ν2 − ν. (2.29)

In figure 2, this fit is also displayed, and we can appreciate its apparent quality.
In figure 3, the quality of (2.29) is further evaluated. In this figure, the Smagorinsky

coefficient C∗
s associated with (2.29), i.e. C∗

s = (ν∗
t /(∆

2|S|))1/2, is evaluated as a function
of ∆/η and compared to Cs obtained from (2.18). As explained before, we take
L/∆ � 1, such that results do not depend on L/∆. (To this end, L/∆ =200 is selected
which provides adequate L/∆ asymptotic behaviour. Consequently, a variation of
∆/η in figure 3 implies a variation of the Reynolds number. One can verify that
the range presented in figure 3 (i.e. 1 � ∆/η � 100) corresponds to Taylor–Reynolds
numbers ranging from about 80 to 1900, which roughly fits in with the range of
Reynolds numbers where Pope’s spectrum is well established (cf. § 2.2).) As a point of
comparison, Lilly’s Smagorinsky constant, and C×

s , (2.22), which is valid in the inertial
subrange, are also displayed. In this figure, the quality of C∗

s as an approximation
to Cs can be appreciated. We can see that C∗

s provides a very good approximation
to Cs for ∆/η � 10. For 4 � ∆/η � 10, the fit deteriorates, but still seems to provide
acceptable results. For ∆/η < 4, C∗

s is clearly evolving more slowly to 0 than Cs .
Obviously, this deviation of C∗

s from Cs in this last range is occurring at low values
of the model coefficient, such that its importance in the total dissipation balance will
be negligible. We will further establish this next, based on an analysis of the induced
errors on the turbulent dissipation.
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Figure 3. Evolution of Cs (2.18), C×
s (2.22) and C∗

s (induced from (2.29)) as a function of the
ratio ∆/η (L/∆ � 1 is assumed). —, Cs; −−−, C×

s ; −.−, C∗
s ; · · ·, Lilly’s Smagorinsky constant.

Hence, define

δapprox
ε =

ε
approx
t − εt

ε
, (2.30)

the relative dissipation error generated by an approximation to the ‘exact’ Smagorinsky
model. The subgrid dissipation εt of the ‘exact’ model, i.e. employing Cs (cf. (2.18))
is used as a reference in this error definition, and the error is normalized with the
total dissipation ε associated with the ‘exact’ model. We can readily see that εt/ε

corresponds to s (cf. (2.21)). Further, for the standard Lilly–Smagorinsky model,
ε

approx
t /ε can be elaborated as

ε
Lilly
t

ε
=

(Cs,∞∆/γ )2〈2SijSij 〉3/2

ε
=Φ

(
L

∆
, ReL

)3/2

. (2.31)

For the proposed improvement (cf. (2.29)), we obtain

ε∗
t

ε
=

ν∗
t 〈2SijSij 〉1/2

ε
=

⎡
⎣

√
1 +

(
Cs,∞∆

γη

)8/3

Φ

(
L

∆
, ReL

)
− 1

⎤
⎦(

γ η

Cs,∞∆

)4/3

Φ

(
L

∆
, ReL

)
.

(2.32)

Consequently, δLilly
ε and δ∗

ε can be evaluated a priori, and results are presented in
figure 4, as a function of the subgrid activity. Based on these results, we can clearly
quantify the excess in dissipation which can result from a standard Lilly–Smagorinsky
model. Even for s > 0.5, i.e. for regions where the subgrid-scale model provides the
dominant part of the dissipation, a considerable overestimation of the dissipation can
be observed. At lower values for s, this error is even larger, almost reaching 50 %.
In contrast, the modified model (2.29) has low relative dissipation errors over the full
s-range with δ∗

ε < 5 %.
In the vicinity of s = 1 and for decreasing s (figure 4), we see that δLilly

ε increases
with a constant slope differing from 0. This is a direct result of the turbulent viscosity
of the Lilly–Smagorinsky model not scaling as νLilly −ν, but obviously as νLilly . Clearly,
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δ∗
ε has slope zero at s =1, and we further verified that this is also the case for the

model using C×
s (2.23) (though this last model shows a considerable underprediction

of the total dissipation at values s < 0.7).
Obviously, the results in figure 4 are obtained based on an a priori analysis and do

not necessarily fully reflect errors on the dissipation in actual simulations. Typically,
in cases where the subgrid dissipation is too high, the energy in the tail of the energy
spectrum decreases, such that the total dissipation rate, related to the resolved small-
scale vorticity, also decreases. However, though errors on total dissipation might
appear smaller in actual simulations, the adjustment of the tail of the spectrum
will introduce errors in the resolved small-scale LES predictions, while large-scale
predictions can also be affected. For instance, in the context of dynamic procedures
that do not allow Cs to vary between the LES filter and the test filter, Meneveau &
Lund (1997) found errors of 30 % on the magnitude of the subgrid-scale stresses and
10 % on the magnitude of the total stresses at s ≈ 0.3.

3. The variational multi-scale Smagorinsky models
Hughes et al. (2000), in the context of a multi-scale analysis of subgrid-scale

modelling for LES, presented the hypothesis that the Smagorinsky model applied to a
small-scale extraction of the turbulent field, delivers superior results when compared
to a standard Smagorinsky model. In later studies, this was firmly established by
effective numerical simulations, see Hughes et al. (2001a) for homogeneous isotropic
turbulence, see Hughes et al. (2001b) and Holmen et al. (2004) for a channel
flow (see also Jeanmeart & Winckelmans 2002; Vreman 2003; Stolz, Schlatter &
Kleiser 2005). These observations make the variational multi-scale formulation of the
Smagorinsky model interesting subject for further study and comparison with the
standard Smagorinsky model.

The formalism presented in § 2, used to analyse and modify the standard
Smagorinsky model, can be further extended for variational multi-scale Smagorinsky
models. In this section, we will show that the coefficients for VMS Smagorinsky
models can be determined based on the same type of a priori analysis. Furthermore,
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modified formulations can be derived which approximate the exact behaviour of the
model coefficient. Finally, comparisons between the standard and VMS Smagorinsky
model will be presented, which further reveal why and how the VMS formulations
are superior to the standard Smagorinsky model.

In their various articles, Hughes et al. present three different versions of the
VMS Smagorinsky model, i.e. the large–small, the all–small, and the small–small
formulations. Several modifications have been proposed (see, e.g. Jeanmeart &
Winckelmans 2002; Vreman 2003, 2004).

The original formulation of the small–small model corresponds to

mij = −
[
2C2

s1∆
2|S ′|S ′

ij

]′
, (3.1)

where the operator [·]′ is a high-pass filter H′. We will not only consider H′ to be a
high-pass projection operator as proposed by Hughes et al. (2000), but also consider
H′ to be a more general high-pass filter as proposed by Vreman (2003, 2004). Further,
Cs1 is the model coefficient, which will be shown to depend on ReL, L/∆, and the
shape of the filter H′.

Vreman (2003) proposed to discard the outer filter [·]′ in (3.1), i.e.

mij = −2C2
s2∆

2|S ′|S ′
ij . (3.2)

Though this proposal is formally not consistent with the original multi-scale
framework proposed by Hughes et al. (2000), this model did produce qualitatively
comparable results to (3.1) (Vreman 2003), and requires fewer filter operations. If the
subgrid dissipation associated with both formulations (3.1) and (3.2) is expressed, we
obtain

εt,s1 = 2C2
s1∆

2〈[|S ′|S ′
ij ]

′Sij 〉 =2C2
s1∆

2〈|S ′|S ′
ij S

′
ij 〉, (3.3)

εt,s2 = 2C2
s2∆

2〈|S ′|S ′
ij Sij 〉. (3.4)

The second equality in (3.3) is valid provided that 〈·〉 is an appropriate inner product,
and that H′ is self-adjoint, such that for two variables f and g, 〈f ′g〉 = 〈fg′〉
(Vreman 2004). In the current study, where the ensemble averaging operator 〈·〉 is
defined as an integration over homogeneous directions in space, and where H′ is
assumed to be a symmetric convolution filter (i.e. KH′(y) = KH′(−y)), this can be
easily verified.

Looking at (3.3) and (3.4), the differences between formulations (3.1) and (3.2) seem
not very large, and correspond to the presence or absence of a small-scale extraction
of the last strain tensor in (3.3).

Next to the small–small model, the all–small formulation (Holmen et al. 2004) of
the VMS Smagorinsky model will also be considered in the present study, and it will
be interesting to compare this model with the small–small versions. The strict VMS
formulation of this model corresponds to

mij = −
[
2C2

a1∆
2|S|S ′

ij

]′
. (3.5)

The difference with (3.1) is obviously the small-scale extraction which in (3.5) does
not appear in the formulation of the magnitude of the strain |S|, hence the naming
all–small, since the strain is obtained using all scales. Again, one might want to
discard the outer high-pass filter operation on this model, leading to

mij = −2C2
a2∆

2|S|S ′
ij . (3.6)
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As for the small–small models, with respect to their induced dissipation, differences
between (3.5) and (3.6) are small, and relations similar to (3.3) and (3.4) can be
inferred.

The large–small formulation (Hughes et al. 2000) will not be evaluated in the present
study, as results and discussions based on the small–small and all–small models will
sufficiently reveal relevant trends and adequately demonstrate the methodology.

Further elaboration of the equations will be presented in § 3.1 for the small–small
model, and in § 3.2 for the all–small model, resulting in expressions for Cs1, Cs2, Ca1

and Ca2. Using these relations and a numerical evaluation based on prescribed spectra,
a comparison between the standard and VMS Smagorinsky models will be presented
in § 3.3 based on their L/∆ asymptotic behaviour. Subsequently, the ∆/η behaviour
of the VMS models will be further investigated in § 3.4. In § 3.5, modifications to the
VMS models are proposed and evaluated, which better approximate the ‘exact’ VMS
models, and finally, the effect of the high-pass filter shape on the behaviour of the
VMS models is addressed in § 3.6.

3.1. The small–small formulation

In the present section, first the original formulation of the small–small model (3.1) is
addressed. Afterwards, the formulation (3.2) is briefly surveyed.

In order to further elaborate relations for the model coefficient Cs1, an approxi-
mation similar to (2.6) has to be introduced. This allows to express the associated
subgrid dissipation as

εt,s1 = (Cs1∆)2〈2S
′
ij S

′
ij 〉3/2 = (Cs1∆)2

(
2

∫ ∞

0

k2(H ′(k))2E(k) dk

)3/2

, (3.7)

with H ′(k) the transfer function of the high-pass filter H′.
Now a new auxiliary function is defined, similar to the introduction of Φ in § 2.2,

i.e.

Ψ1

(
L

∆
, ReL

)
=

4

3

∫ ∞

0

x1/3(H ′(x/L))2(G(x/L))2fL(x)fη(xRe−3/4
L ) dx∫ ∞

0

x1/3(H ′(x/L))2(G(x/L))2 dx

. (3.8)

This function Ψ1 is normalized in such a way that Ψ1 = 1 if L � ∆ � η (i.e. the LES
filter G cuts in the inertial subrange).

Before proceeding with the derivation of an expression for Cs1, we will first elaborate
a more useful expression for the normalization factor in the denominator of (3.8).
In case H′ is a high-pass projection filter with (low-wavenumber) cutoff defined as
k′

c = π/∆′, where ∆′ >∆, and if the LES filter G is a sharp cutoff filter with cutoff
wavenumber kc = π/∆, then the denominator of (3.8) reduces to

∫ πL/∆

πL/∆′
x1/3 dx =

3

4

(
πL

∆

)4/3 (
1 − ∆4/3

∆′4/3

)
=

3

4

(
πL

∆

)4/3 (
1 − β4/3

)
, (3.9)

where β is the LES-filter width to high-pass-filter width ratio (β = ∆/∆′), with
0 <β < 1. In order to use the same expression for a more general class of filters H′

and G, we will introduce a correction factor γ1, which solely depends on the filter
shape of H′ and the LES filter G, and which is constructed similarly to the definition
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of γ (cf. (2.14)), i.e.

γ1 =

⎛
⎜⎜⎝4

3

∫ ∞

0

k1/3(H ′(k))2(G(k))2 dk

(π/∆)4/3
(
1 − β4/3

)
⎞
⎟⎟⎠

3/4

. (3.10)

From the presented definition for γ1, we readily see that γ1 = 1, if G and H′ are
respectively a low-pass and a high-pass sharp cutoff filter.

Using (3.7), the auxiliary function Ψ1 and the definition of its normalization factors,
the small–small version of relation (2.16) can now be constructed, which results in

1 = γ 2
1 C2

s1

(
3α

2

)3/2

π2
(
1 − β4/3

)3/2
Ψ

3/2
1 +

(
3α

2

)
(γ πL/∆)4/3

ReL

Φ. (3.11)

Consequently, the expression for Cs1 reads

Cs1 =
Cs,∞

γ1

Ψ
−3/4
1(

1 − β4/3
)3/4

√
1 −

(
γL

Cs,∞∆

)4/3
1

ReL

Φ

=
Cs,∞

γ1

Ψ
−3/4
1(

1 − β4/3
)3/4

√
1 −

(
γ η

Cs,∞∆

)4/3

Φ. (3.12)

The ReL = ∞ and L/∆ � 1 asymptotic behaviour of Cs1 can be recovered, yielding

Cs1

(
L

∆
� 1, ∞

)
=

Cs,∞

γ1

(
1 − β4/3

)3/4
. (3.13)

If we take γ1 = 1, corresponding to sharp cutoff filters for H′ and G, equation (3.13)
corresponds to the relation for Cs1 presented by Hughes et al. (2000, 2001a), though
using a slightly different nomenclature.

Now, a similar track can be followed to obtain relations for Cs2, (3.2), which
corresponds to Vreman’s proposal to remove the outer high-pass operation in (3.1).
To this end, we write

εt,s2 = (Cs2∆)2〈2S
′
ij S

′
ij 〉1/2〈2S

′
ij Sij 〉

= (Cs2∆)2
(

2

∫ ∞

0

k2(H ′(k))2E(k) dk

)1/2 (
2

∫ ∞

0

k2H ′(k)E(k) dk

)
. (3.14)

Consequently, a second auxiliary function has to be defined, corresponding to

Ψ2

(
L

∆
, ReL

)
=

4

3

∫ ∞

0

x1/3H ′(x/L)(G(x/L))2fL(x)fη

(
xRe−3/4

L

)
dx

(γ2πL/∆)4/3
(
1 − β4/3

) , (3.15)

where

γ2 =

⎛
⎜⎜⎝4

3

∫ ∞

0

k1/3H ′(k)(G(k))2 dk

(π/∆)4/3
(
1 − β4/3

)
⎞
⎟⎟⎠

3/4

. (3.16)
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Further elaboration leads to

Cs2 = Cs,∞
Ψ

−1/4
1 Ψ

−1/2
2

γ
1/3
1 γ

2/3
2

(
1 − β4/3

)3/4

√
1 −

(
γL

Cs,∞∆

)4/3
1

ReL

Φ

= Cs,∞
Ψ

−1/4
1 Ψ

−1/2
2

γ
1/3
1 γ

2/3
2

(
1 − β4/3

)3/4

√
1 −

(
γ η

Cs,∞∆

)4/3

Φ. (3.17)

Obviously, (3.12) and (3.17) do not differ considerably, and both formulations are
identical when H′ is a projection filter. This is a logical result of the dissipation-based
analysis used in the present study to determine the coefficients Cs1 and Cs2. Naturally,
differences in dispersive effects between both formulations are not accounted for,
but, as mentioned previously, Vreman (2003) did not discern important differences
between simulation results employing these models.

3.2. The all–small formulation

Elaborations of the coefficients associated with the all–small models (3.5) and (3.6)
are completely equivalent to the procedure followed in the previous section, and no
further auxiliary functions have to be introduced. Consequently, both coefficients Ca1

and Ca2 are readily elaborated to be

Ca1 = Cs,∞
Φ−1/4Ψ

−1/2
1

γ 1/3γ
2/3
1

√
1 − β4/3

√
1 −

(
γL

Cs,∞∆

)4/3
1

ReL

Φ

= Cs,∞
Φ−1/4Ψ

−1/2
1

γ 1/3γ
2/3
1

√
1 − β4/3

√
1 −

(
γ η

Cs,∞∆

)4/3

Φ. (3.18)

and

Ca2 = Cs,∞
Φ−1/4Ψ

−1/2
2

γ 1/3γ
2/3
2

√
1 − β4/3

√
1 −

(
γL

Cs,∞∆

)4/3
1

ReL

Φ

= Cs,∞
Φ−1/4Ψ

−1/2
2

γ 1/3γ
2/3
2

√
1 − β4/3

√
1 −

(
γ η

Cs,∞∆

)4/3

Φ. (3.19)

Clearly, based on the present dissipation analysis of the models, the all–small
formulations, (3.18) and (3.19) also do not differ considerably. It can be further
observed that the relations for the coefficients of the all–small models (3.18), (3.19)
can be obtained by replacing Ψ

−1/4
1 in (3.12), (3.17) with Φ−1/4 and by adapting the

scaling coefficients. However, in the next section, it will be shown that this difference
has important consequences for the asymptotic L/∆ scaling of the respective models.

3.3. Comparison of VMS and standard Smagorinsky model

In § 1, the issue of subgrid-scale modelling was discussed in view of the desired scale
separation between the large turbulent scales and the dissipation scales. We further
suggested that the ratio L/∆ at which the model dissipation mechanism and the large
turbulent scales start to be mutually independent can be a measure to evaluate model
quality. In the present section, this idea will be used to investigate and compare the
standard, all–small and small–small Smagorinsky models. For this analysis, the filters
G and H′ are, respectively, low- and high-pass sharp cutoff filters. Some consequences
related to the use of smooth filters will be addressed in § 3.6.
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Figure 5. Deviation of Cs , Cs1 (×(1 − β4/3)3/4) and Ca1 (×(1 − β4/3)1/2) from the asymptotic
value Cs,∞ as a function of L/∆ for ReL = ∞. The deviations are normalized using Cs,∞.
—, Cs; −.−, Cs1; −−−, Ca1. Symbols further correspond to ×, ∆/∆′ = 1/2; �, ∆/∆′ = 3/4;
�, ∆/∆′ = 0.95.

Before turning to an analysis of those specific models, one might wonder what is
a physically relevant minimum for L/∆. First of all, we can show that scales which
are separated by more than a decade do not significantly interact (Kraichnan 1976;
Domaradzki & Rogallo 1990). By further analysing the energy-containing range of
Pope’s spectrum, we can determine that the turbulent kinetic energy is approximately
centred around 0.7L, while the transition between the energy-containing range and the
inertial subrange might be roughly situated at 0.07L (Pope 2000). Therefore, as a point
of reference in some further discussions, we will use L/∆ =10, such that L and ∆ are
separated by a decade and such that G cuts near the beginning of the inertial subrange.

In order to evaluate the scale separation properties associated with the different
models, the behaviour of the different model coefficients as a function of L/∆ will
be evaluated for ReL = ∞. In figure 5, the normalized deviation ((Cs − Cs,∞)/Cs,∞)
is displayed as a function of L/∆ for the coefficients Cs , Cs1 and Ca1. In order, to
remove the scaling of both Cs1 and Ca1 with β (cf. equations (3.12) and (3.18)), these
coefficients are represented in a normalized way in the figure, by multiplying them,
respectively, with (1 − β4/3)3/4 and (1 − β4/3)1/2.

The results in figure 5 clearly allow us to appreciate the large differences between
the three models. First of all, by looking at the level of the deviation around L/∆ =10,
deviations are, respectively, 10 %, 4 % and 1 % for the Smagorinsky model, the best
all–small case and the best small–small case. Inversely, by looking at the required
ratio for a deviation below an arbitrary selected level of 1 %, we obtain, respectively,
L/∆ ≈ 55, 25 and 10, for these three models. Obviously, these evaluations are valid
only for homogeneous isotropic turbulence. Nevertheless, we think differences between
the models clearly illustrate the higher potential of the VMS Smagorinsky models,
when compared to the Smagorinsky model. Further, in this evaluation, the small–small
formulation turns out better than the all–small model.

Also interesting in figure 5 are the slopes of the asymptotic convergence associated
with the different models. We can see that the convergence for both the Smagorinsky
and the all–small model behaves as (L/∆)−4/3, while for the small–small model, the
convergence corresponds to (L/∆)−2. This is a remarkable result, which seems to
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unequivocally single out the small–small formulation as the better model, but calls
for a careful analysis of these slopes in view of the large-scale behaviour of the
prescribed turbulence implied by Pope’s spectrum (cf. (2.10)).

In fact, the L/∆ asymptotic behaviour of the model coefficients at infinite Reynolds
numbers is governed by the dependence of the functions Φ and Ψ1 on L/∆ (cf.
equations (2.17), (3.12), (3.18)). Since the functions Φ and Ψ1 are 1 for L/∆ � 1 (and
ReL = ∞), it is particulary interesting to look at their deviation from 1 as a function
of L/∆. We will first concentrate on Φ . At ReL = ∞ and a sharp cutoff filter G, the
deviation of Φ from 1 corresponds to

δΦ =
4

3

∫ πL/∆

0

x1/3(1 − fL(x)) dx

(πL/∆)4/3
. (3.20)

If we look at the form of the function fL(x), we can see for values x � 1, that
1 − fL(x) ∼ x−2. By generalizing this to x−p (afterwards, we will use p = 2 for an
evaluation of the result) and by taking an arbitrary constant scale 
 
 L (such that
x
 = πL/
 � 1), δΦ can be expressed as

δΦ ≈ 4

3

∫ πL/


0

x1/3(1 − fL(x)) dx +

∫ πL/∆

πL/


Cx1/3x−p dx

(πL/∆)4/3

= C ′ (L/∆)−4/3 + C ′′ (L/∆)−p , (3.21)

with C, C ′ and C ′′ constants which do not depend on L/∆. Similar derivations can be
elaborated for δΨ1. By assuming that H′ is a high-pass cutoff filter with ∆/∆′ constant,
but ∆′ <
, we readily obtain δΨ1 ∼ (L/∆)−p . These relations for Φ and Ψ1 are now
further used to obtain the asymptotic behaviour for the different model coefficients
given by equations (2.17), (3.12) and (3.18). Some further series expansion yields

δCs ∼ (L/∆)− min(4/3,p), (3.22)

δCa1 ∼ (L/∆)− min(4/3,p), (3.23)

δCs1 ∼ (L/∆)−p. (3.24)

Hence, for p = 2, we recover the slopes observed in figure 5. Moreover, we can
appreciate that the slopes of the standard Smagorinsky model and the all–small
model are always the same, corresponding to −4/3 if p > 4/3 and −p otherwise. In
contrast, the small–small model always recovers the −p slope.

Naturally, in view of the analysis presented just now, the query for physically
relevant values of p arises. Furthermore, we might wonder whether an algebraic
rate of decay p, as assumed in Pope’s spectrum, instead of an exponential decay
is justified. First of all, the construction of fL (2.10) is inspired on von Kármán’s
interpolation formula, which maps a k4 low-wavenumber behaviour of the spectrum
to the −5/3 region (in Pope’s formulation, a commonly accepted variant, i.e. a k2

low-wavenumber dependency is assumed). This interpolation formula is constructed
based on the physically expected shape of spectra in the low to moderate wavenumber
range. In fact, we can demonstrate that the often experimentally observed exponential
decay of the longitudinal velocity correlation functions at high Reynolds numbers,
corresponds well with von Kármán’s formula for the related spectra (see, e.g. Hinze
1959, pp. 174, 197). Suk Kang, Chester & Meneveau (2003) considered a generalization
of von Kármán’s interpolation function, corresponding to (x/[xp + cL]1/p)11/3. Based
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on their grid-turbulence experiments, they obtained a fit corresponding to p ≈ 1.2.
These observations let us believe that the decay rate of the large-scale influence in
the inertial subrange is indeed algebraic, with the order p around 1 or 2. Note that
the above-discussed differences in asymptotic slope between the small–small and both
other models, disappear for p = 1.2 corresponding to Suk Kang et al.’s (2003) fit.

We now turn back to the discussion on the asymptotic behaviour displayed in
figure 5, specifically addressing the dependency of the VMS results as a function of
∆/∆′. Results are shown for ∆/∆′ = 0.5, 0.75 and 0.95. Before discussing these results,
we want to emphasize that the last value (0.95) is selected in order to investigate the
trends for β → 1 predicted by our methodology. However, we do not envisage such
an extreme setting of β in a practical implementation. Furthermore, we should realize
that the a priori methodology used in this paper, is not particulary suited to predicting
the real behaviour for such an extreme setting of β . In fact, the load of a very small
part of the turbulence at the tail of the spectrum with the full subgrid dissipation, will
certainly distort the shape of the effective spectrum in an unpredictable nonlinear way.

Based on the results in figure 5, we can appreciate that both formulations show the
same tendencies with respect to ∆/∆′. If we look at the small–small model, it is seen
that the (L/∆) behaviour shifts down with increasing ∆/∆′. This seems to indicate
that ∆/∆′ → 1 would produce the best model. However, this will hardly be the case in
practice, as ∆/∆′ → 1 corresponds to an ever smaller region at the tail of the spectrum
on which the model acts. Furthermore from (3.12) and (3.18), we can appreciate that
in this case Cs1 → ∞ (Ca1 → ∞). In fact, further analysis of the coefficients Cs1 and Ca1

as a function of ∆/∆′ in the following subsections, will reveal that values for ∆/∆′

emerge, beyond which the coefficients display clearly undesirable properties.
In the above analysis, the potential influence of the large-scale turbulence on

the model coefficient was evaluated. However, in large-eddy simulations, the scale
separation between the large scales and the dissipation mechanism is mainly desired
to ensure that the large-scale turbulence in the simulation is not erroneously influenced
by the subgrid-scale model. In principle, inversely, the model is allowed to depend on
the large-scale solution. Hence, in this sense, the above analysis is too restrictive with
respect to the evaluation of scale separation. Nevertheless, the analysis in figure 5
is very relevant in the sense that it isolates the asymptotic L/∆-region in which the
model coefficients can be determined based on the physical behaviour of small-scale
turbulence. If one intends to use either the standard Smagorinsky model or the VMS
formulations at lower values for L/∆, it is – in our opinion – not possible to devise
a simple algebraic relation for the behaviour of the model coefficient. In such a
case, one might consider the approach of Canuto & Cheng (1997) and incorporate
important physical effects of the large-scale flow features directly into the formulation
of the model. An alternative solution might employ a double test filter dynamic
procedure as proposed by Porté-Agel, Meneveau & Parlange (2000). They showed
that the introduction of an extra test-filter level in the dynamic procedure can be
used to account for L/∆ changes of the Smagorinksy coefficient, and obtained good
results in atmospheric boundary-layer flows. Later, a Lagrangian formulation of this
procedure was presented by Bou-Zeid, Meneveau & Parlange (2005).

3.4. Coefficients of VMS models using a sharp cutoff high-pass filter H′

In this section, we turn towards a further evaluation of the coefficients associated
with the VMS models, but now the ∆/η dependence is evaluated, using asymptotic
L/∆ conditions. Further, H′ and G are assumed to be sharp cutoff filters, such that
γ = γ1 = 1.
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Figure 6. Model coefficients Cs , Cs1 (normalized) and Ca1 (normalized) as function of ∆/η
(and L/∆ � 1). Without symbols —, Cs (2.18); · · ·, Cs,∞. With symbols —, Cs1 (3.12);
−−−, Ca1 (3.18). Symbols as in figure 5.

In figure 6, the coefficients Cs1 and Ca1 (cf. (3.12) and (3.18)) are displayed as a
function of the ratio ∆/η, for ratios ∆/∆′ =0.5, 0.75 and 0.95. To this end, the func-
tions Φ and Ψ1 were integrated using L/∆ =200, which can be verified (cf. figure 5)
to provide L/∆ asymptotic results. Both coefficients are presented in a normalized
way, respectively multiplied with (1 − β4/3)3/4 and (1 − β4/3)1/2, such that their scaling
with β does not show in the figure. As a point of reference, the Smagorinsky coefficient
Cs is also displayed in figure 6, since Cs provides the limit β → 0 of Cs1 and Ca1 (cf.
e.g. (2.18) and (3.12)).

For ∆/η > 10, figure 6 shows that all normalized coefficients, irrespective of β ,
collapse onto one curve. For ∆/η < 10, large differences appear. First of all, we will
discuss this range for the all–small coefficient Ca1. As seen in the figure, Ca1 increases
monotonously with ∆/η if ∆/∆′ < 3/4. When ∆/∆′ > 3/4 this is not the case any
more, and the (normalized) coefficients increase with decreasing ∆/η. The latter
behaviour occurs, when the high-pass filtered scales used by the model move into the
exponential decaying part of the spectrum (at high wavenumbers), while the dissipa-
tion which should be provided by the subgrid-scale model is decaying at a slower rate.

The small–small coefficient Cs1 shows, in the range ∆/η < 10, trends which
are similar to those discussed for Ca1. However, for Cs1 the inflection between
monotonously decreasing coefficients and increasing coefficients (when ∆/η decreases),
can be determined (not shown) to be at ∆/∆′ ≈ 0.53. Moreover, at larger values of
∆/∆′ the increase of Cs1 is clearly more pronounced than observed for the all–small
coefficient Ca1.

3.5. On the construction of modified VMS models

In § 2.3, we analysed the inertial range behaviour of Cs and the associated turbulent
viscosity νt and found that νt ∼ νLilly − ν (cf. (2.22) and (2.23)). By further formalizing
this, introducing the ratios R and Q, an approximation F (R, Q) = 0 to the
‘exact’ Smagorinsky model was proposed (cf. (2.29)). For the variational multi-scale
formulations of the Smagorinksy model, a similar approach can be followed, and we
will demonstrate this for Cs2 (3.17).
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When the LES filter G cuts in the inertial subrange, one can replace φ, ψ1 and ψ2

in (3.17) by 1. Consequently, we have in the inertial subrange:

Cs2 ∼ Cs,∞

γ
1/3
1 γ

2/3
2

(
1 − β4/3

)3/4

√
1 −

(
γ η

Cs,∞∆

)4/3

. (3.25)

We can express a generalized viscosity associated with this model coefficient, and
find

ν ′
t,s2 = (Cs2∆)2〈2S

′
ij S

′
ij 〉1/2

∼ (γ /γ2)
4/3

1 − β4/3
×

[(
Cs,∞∆

γ

)2( (γ /γ1)
4/3〈2S

′
ij S

′
ij 〉

1 − β4/3

)1/2

− ν

]
. (3.26)

Here, ν ′
t,s2 is the generalized viscosity, where the prime in the notation is added

to distinguish it from a classical viscosity which is multiplied with a normal strain
tensor instead of with a high-pass filtered strain tensor. In (3.26), various scaling
factors appear, which allow us to correctly balance the dissipation effects of parts
in the expression which have a different dimensionality. First of all, we can see that

∆2〈S ′
ij S

′
ij 〉1/2 is normalized with a factor such that it can correctly be combined with

the viscosity ν. Further, the full term in square brackets is multiplied by a second
factor, such that the total result effectively has the dimensionality of ν ′

t,s2.
Identifying these factors in (3.26), allows us to straightforwardly define

Rs2 =
ν ′

t,s2

ν

1 − β4/3

(γ /γ2)4/3
, (3.27)

and

Qs2 =
(Cs,∞∆/γ )2

ν

(
(γ /γ1)

4/3〈2S
′
ij S

′
ij 〉

1 − β4/3

)1/2

. (3.28)

Hence, based on these definitions, the inertial range behaviour of ν ′
t,s2 can be expressed

as Rs2 ∼ Qs2 − 1.
We now construct a modified VMS model by using the same relation

F (Rs2, Qs2) = 0 as that proposed in (2.28). Elaboration yields

ν ′∗
t,s2 =

(γ /γ2)
4/3

1 − β4/3

⎛
⎝

√(
Cs,∞∆

γ

)4 (γ /γ1)4/3〈2S
′
ij S

′
ij 〉

1 − β4/3
+ ν2 − ν

⎞
⎠ . (3.29)

Following a similar procedure, modified models corresponding to (3.1), (3.5) and (3.6)
can be constructed. Their associated generalized viscosities are given by

ν ′∗
t,s1 =

(γ /γ1)
4/3

1 − β4/3

⎛
⎝

√(
Cs,∞∆

γ

)4 (γ /γ1)4/3〈2S
′
ij S

′
ij 〉

1 − β4/3
+ ν2 − ν

⎞
⎠ , (3.30)

ν ′∗
t,a1 =

(γ /γ1)
4/3

1 − β4/3

(√
(Cs,∞∆/γ )4〈2SijSij 〉 + ν2 − ν

)
, (3.31)

ν ′∗
t,a2 =

(γ /γ2)
4/3

1 − β4/3

(√
(Cs,∞∆/γ )4〈2SijSij 〉 + ν2 − ν

)
. (3.32)

In order to further evaluate the quality of the presented approximations, the
dissipation errors δε will be evaluated for constant-coefficient VMS models (employing
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Figure 7. Evolution of the errors δcte
ε and δ∗

ε as a function of the subgrid activity s (and
L/∆ � 1) for the constant-coefficient (a) small–small and (b) all–small VMS Smagorinsky
models and their respective modified versions. —, δcte

ε ; and −.−, δ∗
ε . Symbols as in

figure 5.

asymptotic coefficients, cf. e.g. (3.13)), and for the proposed modified VMS models of
the current section. To this end, expressions for δε can be straightforwardly derived,
resulting in relations similar to equations (2.31) and (2.32).

In figures 7(a) and 7(b), the a priori dissipation errors δcte
ε and δ∗

ε are presented as
a function of the subgrid activity s (see also the discussion at the end off § 2.3 on
how these errors typically show up in actual simulations), and this for the small–small
models (figure 7a) and the all–small models (figure 7b), all employing sharp cutoff
filters H′ and G. First of all, in figures 7(a) and figure 7(b), the same behaviour can
be observed for both the small–small and all–small formulations, though the main
trends are more pronounced for the small–small formulation. Hence, we will direct
the discussion of these results mainly to the small–small models.

The dissipation error δcte
ε for the constant-coefficient small–small model in figure 7(b)

is shown for three different ratios of β , i.e. 1/2, 3/4 and 0.95. We recall that the latter
value (β =0.95) is added in order to evaluate trends for β → 1, but is not proposed
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as an actual setting for β in a practical simulation. All three settings of β produce
better overall results than the standard Smagorinsky model (cf. figure 4), though
the constant-coefficient models remain seriously too dissipative over the full s-range.
Furthermore, the overall behaviour of the constant coefficient small–small model
improves for β → 1. This can be readily explained based on the results previously
presented in figure 6. Because of the non-monotonous behaviour of the exact model
coefficients Cs1 as a function of ∆/η for higher settings of β , a constant (asymptotic)
coefficient is, for ∆/η around 10, effectively closer to the exact coefficient. Furthermore,
the larger deviations around ∆/η = 1 are not very relevant, since the total model
dissipation decreases rapidly in this region. This can partly explain the success of the
constant-coefficient VMS models, even if, for example, compared to a dynamic version
of the models. In this context, note that in their simulations, Holmen et al. (2004)
obtained optimal results (with minimal errors) for the constant-coefficient small–small
model at a relatively high setting for β , i.e. β ≈ 0.7.

Now, the quality of the proposed modifications (3.30) and (3.31) is assessed. For s

close to 1, figure 7 shows that the slope of the error δ∗
ε is zero, in contrast to the slope

of δcte
ε , which is approximately −45◦. This corresponds to the observations in § 2.3

for the standard Smagorinsky model, and is explained by the better inertial range
behaviour of (3.30) and (3.31).

For lower values of s, differences related to β appear in the errors δ∗
ε of the

modified VMS models. This dependence shows an inverse trend when compared to
the dependence of δcte

ε on β , i.e. the quality of the modifications deteriorates for
increasing β . Nevertheless, even for an extreme setting β = 0.95, the errors δ∗

ε remain,
in absolute value, lower than δcte

ε . At a probably more often selected ratio β = 0.5, we
observe |δ∗

ε | < 5 % compared to δcte
ε < 38 %.

3.6. The effect of the high-pass-filter shape H′

Up until now, only sharp cutoff high-pass filters H′ have been used during the
evaluation of variational multi-scale models. In this section, the effect of smooth high-
pass filters will be investigated. We recall that for smooth filters H′, the coefficients
Cs1 and Ca1 are not identical anymore to Cs2 and Ca2 (cf. (3.12), (3.18), (3.17) and
(3.19)). However, we verified that differences in behaviour between Cs1 and Cs2,
and between Ca1 and Ca2 are not very large. In contrast, we will demonstrate that
the change of the high-pass filter from a projection filter to a smooth filter results
in significant changes in the performance of the models. Moreover, some relevant
differences also occur between the small–small and all–small formulations. Therefore,
we elected to present results based on (3.2) and (3.6) and their coefficients Cs2 and
Ca2, to demonstrate the main trends. Successively, the dependency of the exact VMS
coefficients Cs2 and Ca2 on the shape of H′ is investigated, the quality of the approxi-
mations proposed in previous sections is re-established, and the asymptotic L/∆

behaviour of VMS models based on high-pass projection filters and smooth filters is
compared.

Before turning to an extensive analysis of the effect of the filter shape, we recall
that for a smooth filter, γ1 and γ2 are not equal to one, but correspond to the effective
evaluation of equations (3.10) and (3.16). Moreover, for smooth filters, both γ1 and
γ2 depend on β = ∆/∆′. Hence, where the VMS formulations of the Smagorinsky
models are used with smooth high-pass filters H′, one should scrupulously figure
out their correct values, since they appear in the scaling of Cs,∞, not only in the
expressions for the exact model coefficients, but also in all the modified models. In
figure 8, both γ1 and γ2 are displayed as a function of β = ∆/∆′ for ‘top-hat’ and
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Figure 8. The correction coefficients γ1 and γ2 as a function of β , with G a sharp cutoff filter
(with cutoff π/∆) and the filter H′ corresponding to —, a ‘top-hat’ high-pass filter (H (k) =
1 − sin[k∆′/2]/[k∆′/2]), and −−−, a ‘Gaussian’ high-pass filter (H (k) = 1 − exp[−k2∆′2/24]).

‘Gaussian’ high-pass filters (the LES filter G remains a standard sharp cutoff filter).
These filters correspond to high-pass filters, which are constructed by subtracting,
respectively, a regular top-hat low-pass filter and Gaussian filter from the identity
operator. As can be appreciated from the figure, γ1 and γ2 depend strongly on β and
can be considerably lower than one. Furthermore, for β < 0.4 and a ‘top-hat’ filter,
we can observe oscillatory behaviour for γ1 and γ2, which is related to the oscillatory
nature of the ‘top-hat’ filter transfer function. A more extensive analysis of γ1 and
γ2, specifically addressing filters which are not spherical symmetric in Fourier space
(preferably used in many practical implementations), is elaborated in the Appendix.

In figure 9, the evolution of the exact model coefficient Cs2 of the small–small
model (3.2) is shown both for a sharp cutoff and ‘top-hat’ high-pass filter. Coefficients
of the all–small model show the same trends, but will not be shown. In order
to compare the coefficients Cs2, they are appropriately normalized by multiplying
them with (1 − β4/3)3/4γ

1/3
1 γ

2/3
2 (cf. equation (3.17)). Three different ratios ∆/∆′ are

shown, corresponding to 0.5, 0.75 and 0.95. From figure 9, we can appreciate that
the normalized model coefficients for ‘top-hat’ high-pass filtered VMS models, are
insensitive to the LES-to-high-pass filter ratio β . For β =0.75 and 0.95, values are
visually the same, while for β = 0.5, differences are not very large. This is in clear
contrast to the behaviour of the normalized coefficients related to sharp cutoff high-
pass filtered VMS models, which are also shown in the figure.

The large disparity in behaviour of the model coefficients for these two high-pass
filters is related to the ‘top-hat’ high-pass filter being a smooth filter, which does not
‘cut’ away scales, but rather smoothly dampens certain scales. It is well known that
a ‘top-hat’ high-pass filter H′

th is a second-order filter. Consequently, we can trivially
show that ∫ 2π/


0

H ′
th(k)φ(k) dk ∼ ∆′2,

∫ 2π/


0

(H ′
th(k))2φ(k) dk ∼ ∆′2, (3.33)

with 
 � ∆′, an arbitrary constant length, and φ an arbitrary function. Hence, even
if the inertial subrange and the main point of dissipation are situated at scales
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Figure 9. Evolution of Cs2 (normalized) as function of the ratio ∆/η for different values of
∆/∆′, and two different high-pass filters H′ (L/∆ � 1). —, Cs ( = Cs2 for ∆/∆′ = 0). Curves
with symbols: —, Cs2 evaluated with a cutoff high-pass filter H′ for different ∆/∆′; −−−,
Cs2 evaluated with a ‘top-hat’ high-pass filter H′ for different ∆/∆′. Symbols as in figure 5.
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Figure 10. Evolution of the errors δcte
ε and δ∗

ε as a function of the subgrid activity s (and
L/∆ � 1) for the constant-coefficient small–small VMS Smagorinsky model (3.2) and its
modified version (3.29), all using a ‘top-hat’ high-pass filter H′. —, δcte

ε ; −.−, δ∗
ε . Symbols as

in figure 5.

considerably larger than ∆′, their effect on the integral in (3.8), or (3.15), scales with
∆′2. In contrast, the far end of Kolmogorov’s equilibrium range (at scales around and
smaller than the Kolmogorov scale η) decays exponentially. Consequently, when ∆/∆′

increases, the contribution of the inertial subrange and the main point of dissipation
will remain relatively important in the total integral.

The quality of the proposed modifications to the VMS models for a ‘top-hat’
high-pass filter is addressed in figure 10, based on an evaluation of the relative
dissipation errors δcte

ε and δ∗
ε . Only results for the small–small models are shown, as

trends for the all–small model are similar. Results in figure 10 affirm the quality of
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Figure 11. Deviation of Cs , Cs2 (normalized) and Ca2 (normalized) from the asymptotic value
Cs,∞ as a function of L/∆ for ReL = ∞ and different high-pass filters H′. The deviations are
normalized using Cs,∞. —, Cs; −.−, Cs2; −−−, Ca2. Symbols further correspond to ×, cutoff
high-pass filter with ∆/∆′ = 1/2; �, ‘top-hat’ high-pass filter with ∆/∆′ = 1/2.

the proposed approximations to the behaviour of the exact model (i.e. using exact
coefficients). Moreover, in contrast to trends observed for a sharp cutoff high-pass
filter (cf. figure 7), the quality of the models is quite insensitive to ∆/∆′ for ‘top-hat’
high-pass filtered VMS. Hence, the use of ‘top-hat’ high-pass filters provides more
robust formulations of the VMS Smagorinsky models. It is inspiring to observe that
Sagaut & Levasseur (2005), based on an extensive sensitivity analysis, found that
(constant-coefficient) VMS models employing a smooth high-pass filter instead of
projection filters, effectively yield improved results in simulations.

Finally, the asymptotic L/∆ behaviour of the VMS models employing a ‘top-hat’
high-pass filter, is investigated. In figure 11, the results are presented for the small–
small (3.17) and all–small (3.19) VMS formulations employing a cutoff and a ‘top-hat’
high-pass filter, with ∆/∆′ =0.5. As can be seen from the figure, the change of
high-pass filters does not significantly influence the results. With respect to the slopes
associated to the asymptotic L/∆ behaviour, an analysis similar to that presented in
§ 3.3 (cf. equations (3.22)–(3.24)) can be elaborated. If we take q as the order of the
high-pass filter, we can verify that

δCa2 ∼ (L/∆)− min(4/3,4/3 + q,p) (q > 0)∼ (L/∆)− min(4/3,p) , (3.34)

δCs2 ∼ (L/∆)− min(4/3 + q,p) , (3.35)

where the second proportionality in (3.34) results from the order q being assumed
to be larger than 0, such that min(4/3, 4/3 + q, p) = min(4/3, p). Hence, the use of a
second-order top-hat filter (q = 2) does not change anything for the L/∆ asymptotic
behaviour of the all–small model. For the small–small model, a smooth filter does not
change anything, provided q >p − 4/3. For p =2, associated with Pope’s spectrum,
and q = 2, this condition is satisfied.

4. Conclusions
In the current paper, an exhaustive analysis has been presented on the required

behaviour of model coefficients, belonging to the standard and variational multi-scale
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formulations of the Smagorinsky model, as a function of the subgrid activity, the ratio
∆/η, and as a function of L/∆. Moreover, modifications to the Smagorinsky model
and its VMS formulations are proposed, i.e. specifically recall equations (2.29), and
(3.29)–(3.32). In a priori analyses employing well-established spectrum descriptions,
these modifications showed considerable improvement, compared to the classical
constant-coefficient versions.

The applied methodology in the present paper, is an extension of Lilly’s (1967)
method for the determination of his ‘universal’ Smagorinsky constant. Instead of using
a simplified (high-Reynolds-number) −5/3 shape of the spectrum, as Lilly employed
in his analysis, here, general Reynolds-dependent spectra are premised, which include
an energy-containing large-scale range, an inertial subrange, and a dissipation range.
Central to the formulation of a surveyable and elegant methodology are the definitions
of three normalized functions Φ , Ψ1 and Ψ2, which incorporate the effects of the shape
of the spectrum and the different filters, and can be easily used for the construction
and evaluation of relations describing the behaviour of the different coefficients. Some
practical evaluations and verifications of the proposed relations are based on Pope’s
(2000) spectra. However, all theoretical results are presented in a generic way, which
is independent of the definition or use of a particular choice of spectrum.

The evaluation of the standard Smagorinsky coefficient as a function of ∆/η (the
ratio between the filter width and the Kolmogorov scale) reveals that the coefficient
decreases rapidly when ∆/η → 1. These results are in line with the observations by
Voke (1996). Moreover, by evaluating the coefficient as a function of the subgrid
activity, which is a nonlinear transformation of ∆/η, we can appreciate that the
Smagorinsky coefficient – even in the vicinity of s = 1 – is not constant.

Therefore, a framework has been elaborated which allows the development of
easy-to-use generic modifications to the original model, such that the effective model
coefficients of the modified model follow the behaviour of the ‘exact’ coefficients
better. For the Smagorinsky model, we propose to express the eddy viscosity νt

in large-eddy simulations νt =(ν2
Lilly + ν2)1/2 − ν (cf. 2.29), with νLilly the turbulent

viscosity obtained by employing Lilly’s model constant and ν the laminar viscosity.
Analysis of the constant-coefficient model and the proposed modification reveals the
quality of the improvements. First of all, the constant-coefficient model is clearly too
dissipative over the full subgrid-activity range (0 <s < 1), with a priori errors on the
total dissipation up to 50 %. In contrast, the proposed modification was shown to be
very accurate for all settings of s, with errors below 5 %.

Next to the standard Smagorinsky model, similar analyses have been performed for
the small–small and all–small variational multi-scale formulations of the Smagorinsky
model (Hughes et al. 2000; Holmen et al. 2004). Overall, trends observed for the
standard Smagorinsky model also show for the VMS models, though an additional
dependence of the coefficients on ∆/∆′ (expressing the ratio of the LES-filter width
∆ to the VMS-high-pass-filter width ∆′) is observed. Modified models have been
presented in equations (3.30) and (3.29) for the small–small model, and in equations
(3.31) and (3.32) for the all–small model. Furthermore, the quality of the improvements
has been rigorously assessed.

The relevance of the various proposed modifications is, in our opinion, evident.
As established based on an a priori evaluation, these modifications contain a good
‘built-in’ ∆/η scaling, and are, at the same time, easy to use in actual implementations,
i.e. they can be operated using asymptotically determined constant coefficients.
Consequently, the robustness of these models and their application range can be
considerably larger than that of their standard constant-coefficient counterparts.
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Obviously, these prospects need evaluation in various practical test cases, and hence
contain material for further work.

Next to the extensive analysis of the ∆/η dependence of the model coefficients,
also the influence of L/∆ on the model has been investigated, with L the length scale
related to the energy-containing large scales. In § 1, we hypothesized that a comparison
of the asymptotic L/∆ behaviour of subgrid-scale models might elucidate their relative
quality. Consequently, this asymptotic behaviour was investigated for the standard
and both VMS Smagorinsky models. First of all, if an arbitrary deviation of the
model coefficient from its asymptotic value is used as a reference, we can observe that
the Smagorinsky model always requires the highest ratio L/∆ to attain this value,
followed by the all–small model, while the small–small model requires the lowest L/∆

(e.g. for a deviation of 1%, ratios are, respectively, L/∆ =55, 25 and 10). Furthermore,
we evaluated the slope of the asymptotic convergence at high ratios L/∆ for the three
models. It turned out that the slope of convergence of the Smagorinsky model and
the all–small Smagorinsky model are the same, amounting to − max{4/3, p}, with p

the decay rate of the large-scale influence in the inertial subrange. For the small–small
model, we found this slope always to be −p, corresponding to the steepest physically
attainable slope.

Finally, for the VMS formulations, the change from high-pass projection filters,
as originally proposed in the variational multi-scale framework by Hughes et al.
(2000), towards smooth filters, as tested by Vreman (2003), is investigated. It has been
surprising to find that smooth high-pass filters improve the ‘robustness’ of the VMS
models. Furthermore, provided some constraints are set on the order of the high-pass
filters, the L/∆ asymptotic behaviour does not change significantly.

Appendix. Weighting coefficients for filters which are not spherical-symmetric
in Fourier space

All derivations in the main text of the present paper implicitly assume that the filters
G and H′ are spherical symmetric in Fourier-space, such that their one-dimensional
transfer function can be used directly for the filtering of the shell-integrated energy
spectrum. This Appendix briefly addresses the issues which arise, when filters are used
which are not spherical symmetric in Fourier space, since these types of filters often
occur in practical LES implementations.

First, where the LES filter G is not spherical symmetric in Fourier space, the
definition of the function Φ (2.13) must be replaced by a three-dimensional equivalent,
i.e.

Φ

(
L

∆
, ReL

)
=

1

4π

∫ ∞

0

x1/3fL(x)fη

(
xRe−3/4

L

) [∫ 2π

0

∫ π

0

G(x/L)2 sin θ dθ dφ

]
dx

1

4π

∫ ∞

0

∫ 2π

0

∫ π

0

x1/3G(x/L)2 sin θ dθ dφ dx

, (A 1)

with x = kL =[k1L, k2L, k3L] the normalized wave vector in Fourier space. Using a
spherical coordinate system, we can ensure that x =[x sin θ cosφ, x sin θ sinφ, x cos θ],
with x the magnitude of the vector x, φ the azimuth, and θ the zenith.

Expressions equivalent to (A 1) can be readily derived for Ψ1 and Ψ2. Of more direct
practical importance though, is the formulation of the weighting coefficients γ , γ1 and
γ2, as they appear as scaling factors in the modified models (2.29) and (3.29)–(3.32).
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Figure 12. The correction coefficients γ1/γ and γ2/γ as a function of β , both for filters which
are spherical-symmetric and non-spherical-symmetric in Fourier space. −−−, H′ a ‘top-hat’
high-pass filter and G a cutoff filter (with cutoff π/∆), both spherical symmetric; —, H′

corresponding to (A 5) and G a cubical cutoff filter (with cutoff π/∆).

One easily obtains

γ =

⎛
⎜⎜⎝ 1

3π

∫ ∞

0

∫ 2π

0

∫ π

0

k1/3(G(k))2 sin θ dθ dφ dk

(π/∆)4/3

⎞
⎟⎟⎠

3/4

, (A 2)

γ1 =

⎛
⎜⎜⎝ 1

3π

∫ ∞

0

∫ 2π

0

∫ π

0

k1/3(H ′(k))2(G(k))2 sin θ dθ dφ dk

(π/∆)4/3
(
1 − β4/3

)
⎞
⎟⎟⎠

3/4

. (A 3)

and

γ2 =

⎛
⎜⎜⎝ 1

3π

∫ ∞

0

∫ 2π

0

∫ π

0

k1/3H ′(k)(G(k))2 sin θ dθ dφ dk

(π/∆)4/3
(
1 − β4/3

)
⎞
⎟⎟⎠

3/4

, (A 4)

We will briefly discuss some results, obtained from the numerical integration of these
equations using a few selected filters.

The integration of (A 2) for a cubical sharp cutoff filter with cutoff π/∆ leads
to γ ≈ 1.22. This is significantly higher than γ = 1 for a spherical cutoff filter. This
difference reflects the fact, that a cubical cutoff filter, for the same value of ∆, retains
overall more scales than the spherical cutoff filter. In fact, γ provides a link between
the formal – often filter dependent – definition of the filter width ∆, and the ‘effective’
filter width of its accompanying filter. In fact, one might have recognized in all
modified models, that γ appears as a scaling of ∆.

Likewise, equations (A 3) and (A 4) can be integrated numerically. In figure 12, we
present, as a function of ∆/∆′, results for a cubical cutoff filter G combined with a
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top-hat filter defined as

H ′
th(k) = 1 −

3∏
i=1

sin(ki∆
′/2)

ki∆′/2
. (A 5)

Since both γ1 and γ2 are scaled by γ in all modified equations, γ1/γ and γ2/γ are
represented in figure 12. This scaling ensures (cf. their respective definitions) that γ1/γ

and γ2/γ are 1 for β = 0. Furthermore, as a point of reference, the weighting factors
associated with the spherical-symmetric equivalents of G and H′ are also displayed.
It is clear that the oscillatory behaviour of γ1 and γ2 for the spherical-symmetric
‘top-hat’ filter does not occur for (A 5), since the oscillations in (A 5) are not aligned
with wavenumber spheres in Fourier space.
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